

Cooperative Agreement No. DE-FC26-00NT40770

Southern Fine Particulate Monitoring Project

Objectives

- Augment existing particulate measurements at an established urban southeastern monitoring site
- Make a detailed database of near-continuous measurements of fine particulate mass, composition, and key properties (including particle size distribution)
- Apply the measurements to source attribution, time/transport properties of fine PM, and implications for management strategies for PM_{2.5}
- Maintain high level of collaboration with other regional PM_{2.5} research programs
- Focus areas: continuous composition and sizing; source attribution; carbonaceous and water content

Features of Birmingham Airshed

- \rightarrow Nonattainment for O₃, PM_{2.5}
- Southeastern climate
 - high "regional" PM_{2.5} relative to source
- Ridge/valley topology and meteorology
 - local transport, mixing patterns
- Fewer major upwind regional sources
 - directional signatures possible
- Distinctive local source mix
 - mobile, metallurgical, vegetative

Birmingham PM Composition

Birmingham PM Composition

Birmingham PM Knowledge Gaps

- Carbon PM: nature, sources, quantity
 - OC uncertainty
- Coarse PM: nature, sources, distribution
 - poor mass balance, spatial inhomogeneity
- Particle-bound water effects
- Main local, regional sources of PM

Coarse PM Issues

Project Approach

- Establish Collaboration With Existing Programs Using North Birmingham Site (Jefferson County, SEARCH)
- Assemble Instrument Package for Continuous Monitoring of Ambient Fine Particulate Mass, Composition, and Key Properties (Including Particle Size Distribution)
- Use Site as a Test Bed for Particulate Measurement Technique Development, Evaluation During Intensive Tests
- Apply increased predictive strength to local and mid-range source attribution models (PMF variants)
- Apply air quality modeling to time/transport properties of fine PM, and implications for management strategies for PM_{2.5}

Existing Samplers at Site

→ PM Mass

- → FRM (24 Hour) : PM_{2.5}
- → TEOM (Continuous) : PM_{2.5}, PM₁₀

PM Chemistry

- → PM_{2.5} (24 Hour) : SO₄=,NH₄+,NO₃-, OC/EC, trace elements
- → PM_{coarse} (24 Hour) : SO₄=,NH₄+,NO₃-, trace elements
- → PM_{2.5} (Continuous) : OC/EC (Absorption)

Existing Samplers at Site

- → Gases
 - + O_3
 - NO, NO₂, NO₂, SO₂, CO
- Surface Meteorological Data
 - Wind Direction, Wind Speed, Temperature, Relative Humidity, Barometric Pressure, Precipitation

Planned New Samplers At Site

- → PM Mass
 - → TEOM (Continuous) : PM_{coarse}
 - Light Scattering : nephelometer
- → PM Chemistry
 - ♦ PM_{2.5} (24 h integrated): EPA Speciation Site
 - → PM_{2.5} (Continuous): SO₄=,NH₄+,NO₃-,
- → PM Sizing
 - Aerodynamic Particle Sizer-TSI
 - Scanning Mobility Particle Sizer-TSI

PM Source Attribution Studies

- Positive Matrix Factorization (PMF) and extensions:
 - Complete 24 hr samples, extend with 2000 data
 - Extend model with Met variables, Coarse PM
 - Incorporate continuous mass, met, size, composition data when available into treatment
- Separate treatment of local, regional PM sources
 - Back trajectory, Potential Source Contribution
 Function (PSCF) analysis

PM Method Development Studies

- Carbon PM: further time differentiation of "OC"
 - sensitivity to alternate thermal cycles
 - Can low temperature (<300C) volatilization mass loss tests determine "OC"/ Carbon mass ratio for local sources?
- Particle-bound water effects
 - TDMA during intensives
 - Fixed vs. ambient RH for PSD suitability for PSD as source tracer

Schedule / Milestones

	Fall 2000			Winter 2001			Spring 2001			Summer 2001			Fall 2001			Winter 2002			Spring 2002			Summer 2002		
	0	N	D	J	F	M	A	M	J	J	A	S	0	N	D	J	F	M	A	M	J	J	A	S
Install New																								
Instruments																								
PM Monitoring																								
Intensive																								
Measurements																								
Method																								
Development/ Testing																								
Data Analysis /																								
Modeling																								
Progress Report (QTR)				Δ			Δ			Δ			Δ			Δ			Δ			Δ		
Final Report																								Δ